```
Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / Second Exam
```

```
        Started on Sunday, 10 January 2021, 9:55 AM
        State Finished
    Completed on Sunday, }10\mathrm{ January 2021, 11:10 AM
        Time taken 1 hour 15 mins
            Grade 23.00 out of 32.00 (72%)
```

Question 1
Correct
Mark 1.00 out of
1.00

Let V be a vector space, $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ a spanning set for V, and $v \in V$, then the vectors $\left\{v_{1}, v_{2}, \ldots v_{n}, v\right\}$ form a spanning set for V.

Select one:
a. False

- b. True $\sqrt{ }$

Question 2
Correct
Mark 1.00 out of
1.00

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ forms a spanning set for a vector space $V, \operatorname{dim}(V)=3, v_{4}$ can be written as a linear combination of v_{1}, v_{2}, v_{3}, then

Select one:
a. $\left\{v_{1}, v_{2}, v_{3}\right\}$ do not form a spanning set for V

- b. $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for V
c. $\left\{v_{1}, v_{2}, v_{3}\right\}$ are linearly dependent
d. v_{1} can be written as a linear combination of v_{2}, v_{3}, v_{4}

The correct answer is: $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for V

Question 3
Correct
Mark 1.00 out of
1.00

The nullity of $A=\left(\begin{array}{ccccc}1 & 1 & 0 & 2 & 0 \\ 1 & 2 & -1 & 0 & 1 \\ 2 & 3 & -1 & 2 & 1\end{array}\right)$ is
Select one:
a. 4

- b. 3
\checkmark
c. 2
d. 1

The correct answer is: 3
Question 4
Correct
Mark 1.00 out of
1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $[p(x)]_{E}=\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$, then

Select one:
© a. $p(x)=3 x^{2}+2 x+4$
b. $p(x)=3 x^{2}+2 x+5$
c. $p(x)=3 x^{2}+x-3$
d. $p(x)=x^{2}-x+3$

The correct answer is: $p(x)=3 x^{2}+2 x+4$

```
Question 5
Incorrect
Mark 0.00 out of 1.00
```

Question 6
Incorrect
Mark 0.00 out of 1.00 \square

Question 7
Correct
Mark 1.00 out of
1.00

If $\left\{v_{1}, \cdots, v_{n}\right\}$ are linearly independent and v is not in $\operatorname{Span}\left\{v_{1}, \cdots, v_{n}\right\}$, then $\left\{v_{1}, \cdots, v_{n}, v\right\}$ are linearly independent.

Select one:
a. True
© b. False \boldsymbol{x}

The correct answer is: True
Let $S=\{f \in C[-1,1]: f(-1)=f(1)\}$, then S is a subspace of $C[-1,1]$.
Select one:
a. True
© b. False \boldsymbol{x}

The correct answer is: True

If A is a nonzero 3×2 matrix such that $A x=0$ has infinite number of solutions, then $\operatorname{rank}(A)=1$.

Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 8
Correct
Mark 1.00 out of
1.00

Let $S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}$. Then dimension of S equals

Select one:

- a. 2
b. 0
c. 3
d. 1

The correct answer is: 2

Question 9
Correct
Mark 1.00 out of
1.00

$\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right)$ is
Select one:
a. 0
b. 1

- c. 2
d. 3

The correct answer is: 2

Question 10
Correct
Mark 1.00 out of
1.00
dimension of the subspace $S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{cc}2 & 1 \\ 0 & 1\end{array}\right), A_{2}\left(\begin{array}{cc}-1 & 0 \\ 3 & 1\end{array}\right), A_{3}=\left(\begin{array}{cc}-8 & -3 \\ 6 & -1\end{array}\right)\right\}$ is
Select one:
a. 0
b. 1
(c. 2
d. 3

The correct answer is: 2

Question 11
Correct
Mark 1.00 out of
1.00

Which of the following is not a basis for the corresponding space

Select one:
a. $\left\{(1,1)^{T},(2,-3)^{T}\right\} ; \mathbb{R}^{2}$
© b. $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$
c. $\{5-x, x-1\} ; P_{2}$
d. $\left\{x+4,1-x^{2}, x^{2}+x+3\right\} ; P_{3}$

The correct answer is: $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$

```
Question 12
Correct
Mark 1.00 out of
1.00
```

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis $U=\left[u_{1}=\binom{1}{2}, u_{2}=\binom{2}{5}\right]$ is

Select one:
a. $T=\left(\begin{array}{cc}-1 & 2 \\ 2 & -5\end{array}\right)$
(-). b. $T=\left(\begin{array}{cc}5 & -2 \\ -2 & 1\end{array}\right)$
c. $T=\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)$
d. $T=\left(\begin{array}{cc}1 & -2 \\ -2 & 5\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}5 & -2 \\ -2 & 1\end{array}\right)$

Question 13
Correct
Mark 1.00 out of
1.00

Question 14
Correct
Mark 1.00 out of
1.00

If A is a 5×4-matrix, and $A x=0$ has only the zero solution, then $\operatorname{rank}(A)=4$.
Select one:

- a. True \checkmark
b. False

The correct answer is: True

If the columns of $A_{n \times n}$ are linearly independent and $b \in \mathbb{R}^{n}$, then the system $A x=b$ has

Select one:
a. exactly 2 solutions
-b. exactly one solution \checkmark
c. no solution
d. infinitely many solutions

The correct answer is: exactly one solution
Question 15
Incorrect
Mark 0.00 out of
1.00

If A is a 3×5-matrix, rows of A are linearly independent, then
Select one:
a. $\operatorname{rank}(A)=\operatorname{nullity}(A)+3$
(b. $\operatorname{rank}(A)=\operatorname{nullity}(A)+2$
\times
c. $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$
d. $\operatorname{rank}(A)=\operatorname{nullity}(A)$

The correct answer is: $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$

```
Question 16
Correct
Mark 1.00 out of
1.00
```

\qquad
Question 17
Correct
Mark 1.00 out of
1.00

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a vector space V, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is Select one:

- a. linearly independent and not a spanning set for V.
b. linearly independent and a spanning set for V.
c. linearly dependent and a spanning set
d. linearly dependent and not a spanning set for V.

The correct answer is: linearly independent and not a spanning set for V.
Question 18
Correct
Mark 1.00 out of
1.00

If A is a 3×2 matrix, then

Select one:

- a. The rows of A are linearly dependent
b. The columns of A are linearly dependent
c. The columns of A are linearly independent
d. $\operatorname{Rank}(A)=3$

The correct answer is: The rows of A are linearly dependent

Question 19
Incorrect
Mark 0.00 out of
1.00

Let A be an $m \times n$ matrix. If the rows of A are linearly dependent, then $n \leq m$
Select one:
a. True

- b. False \boldsymbol{x}

The correct answer is: True

```
Question }2
Correct
Mark 1.00 out of
1.00
```

Question 21
Correct
Mark 1.00 out of
1.00
1.00
1.00
- a. $\operatorname{nullity}(A) \geq 2$
b. The rows of A are linearly dependent
c. $\operatorname{Rank}(A)=2$
d. The columns of A are linearly independent
The correct answer is: $\operatorname{nullity}(A) \geq 2$
Question 22
Correct
Mark 1.00 out of
1.00
let A be a 4×7-matrix, if the row echelon form of A has 2 nonzero rows, then dim (column space of A) is
Select one:
- a. $2 \checkmark$
b. 3
c. 5
d. 7

The correct answer is: 2

Question 23
Correct
Mark 1.00 out of
1.00
if $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is a spanning set for $\mathbb{R}^{3 \times 2}$, then
Select one:
a. $k \leq 6$
b. $k>6$
c. $k=6$

- d. $k \geq 6$

The correct answer is: $k \geq 6$

Question 24
Incorrect
Mark 0.00 out of
1.00

The coordinate vector of $6+8 x$ with respect to the basis $[2 x, 2]$ is $(4,3)^{T}$

Select one:

- a. False x
b. True

Question 25
Correct
Mark 1.00 out of
1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=2 x^{2}-2 x+1$, then the coordinate vector of $p(x)$ with respect to E is

Select one:
a. $\left(\begin{array}{c}-2 \\ -3 \\ 2\end{array}\right)$
-b. $\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$
c. $\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$
d. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$
Question 26
Incorrect
Mark 0.00 out of
1.00

If A is an $m \times n$-matrix, and columns of A are linearly independent, then
Select one:
a. $n \leq m$
(b. $m \leq n$
\times
c. $m=n+1$
d. $m=n$

The correct answer is: $n \leq m$
Question 27
Correct
Mark 1.00 out of
1.00

Let $S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=y+1\right\}$, then S is a subspace of \mathbb{R}^{2}.
Select one:

- a. False \checkmark
b. True

The correct answer is: False

Question 28
Incorrect
Mark 0.00 out of
1.00

If $A=\left(\begin{array}{cccc}-1 & -2 & -1 & 0 \\ 1 & 2 & 2 & 0 \\ -2 & -4 & 0 & 0\end{array}\right)$, then $\operatorname{rank}(A)=3$.
Select one:
a. False
(b. True \mathbf{x}

